Pressure loss

Example

- suppose qv $=11000 \mathrm{~m}^{3} / \mathrm{h}$
- at $\mathrm{vf}=3,2 \mathrm{~m} / \mathrm{s}$ (air velocity between the blades) the necessary surface is: $\mathrm{Af}=\quad \frac{11000 \mathrm{~m}^{3} / \mathrm{h}}{3,2 \mathrm{~m} / \mathrm{s} \times 360 \mathrm{~s}}=0,96 \mathrm{~m}^{2}$

$$
3,2 \mathrm{~m} / \mathrm{s} \times 3600 \mathrm{~s} / \mathrm{h}
$$

- with table (p. 5050): nett surface of $1 \mathrm{~m}^{2}$ gives a surface of $1,6 \mathrm{~m}^{2}$ or $1600 \mathrm{~mm} \times 1000 \mathrm{~mm}$ or $2 \times(\mathrm{L}+\mathrm{W}) \times \mathrm{H}=1,6 \mathrm{~m}^{2}$
- suppose $\mathrm{H}=0,6 \mathrm{~m}$
$L+W=\frac{1,6}{2 \times 0,6}=1,33 \mathrm{~m}$
- choice: $L=800 \mathrm{~mm}$ and $\mathrm{B}=500 \mathrm{~mm}$
- with L and B known, the height is calculated the same way
- $\Delta \mathrm{Pt}=23 \mathrm{~Pa}$ at $\mathrm{vf}=3,2 \mathrm{~m} / \mathrm{s}$ for exhaust of air (1)

Remark:

- selection to apply with a regular flow
- with combined penthouses, for supply and exhaust, there is a non-active part with a width of 200 mm

